Рассчитать высоту треугольника со сторонами 143, 93 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 93 + 78}{2}} \normalsize = 157}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157(157-143)(157-93)(157-78)}}{93}\normalsize = 71.6909646}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157(157-143)(157-93)(157-78)}}{143}\normalsize = 46.6241938}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157(157-143)(157-93)(157-78)}}{78}\normalsize = 85.4776886}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 93 и 78 равна 71.6909646
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 93 и 78 равна 46.6241938
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 93 и 78 равна 85.4776886
Ссылка на результат
?n1=143&n2=93&n3=78
Найти высоту треугольника со сторонами 104, 73 и 71
Найти высоту треугольника со сторонами 90, 74 и 59
Найти высоту треугольника со сторонами 93, 89 и 42
Найти высоту треугольника со сторонами 148, 104 и 70
Найти высоту треугольника со сторонами 127, 96 и 35
Найти высоту треугольника со сторонами 101, 83 и 27
Найти высоту треугольника со сторонами 90, 74 и 59
Найти высоту треугольника со сторонами 93, 89 и 42
Найти высоту треугольника со сторонами 148, 104 и 70
Найти высоту треугольника со сторонами 127, 96 и 35
Найти высоту треугольника со сторонами 101, 83 и 27