Рассчитать высоту треугольника со сторонами 143, 93 и 88
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 93 + 88}{2}} \normalsize = 162}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162(162-143)(162-93)(162-88)}}{93}\normalsize = 85.2553733}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162(162-143)(162-93)(162-88)}}{143}\normalsize = 55.4458022}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162(162-143)(162-93)(162-88)}}{88}\normalsize = 90.0994285}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 93 и 88 равна 85.2553733
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 93 и 88 равна 55.4458022
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 93 и 88 равна 90.0994285
Ссылка на результат
?n1=143&n2=93&n3=88
Найти высоту треугольника со сторонами 47, 43 и 12
Найти высоту треугольника со сторонами 125, 114 и 30
Найти высоту треугольника со сторонами 98, 81 и 29
Найти высоту треугольника со сторонами 88, 82 и 14
Найти высоту треугольника со сторонами 107, 81 и 61
Найти высоту треугольника со сторонами 143, 138 и 12
Найти высоту треугольника со сторонами 125, 114 и 30
Найти высоту треугольника со сторонами 98, 81 и 29
Найти высоту треугольника со сторонами 88, 82 и 14
Найти высоту треугольника со сторонами 107, 81 и 61
Найти высоту треугольника со сторонами 143, 138 и 12