Рассчитать высоту треугольника со сторонами 143, 98 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 98 + 64}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-143)(152.5-98)(152.5-64)}}{98}\normalsize = 53.9474015}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-143)(152.5-98)(152.5-64)}}{143}\normalsize = 36.9709465}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-143)(152.5-98)(152.5-64)}}{64}\normalsize = 82.6069586}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 98 и 64 равна 53.9474015
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 98 и 64 равна 36.9709465
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 98 и 64 равна 82.6069586
Ссылка на результат
?n1=143&n2=98&n3=64
Найти высоту треугольника со сторонами 141, 130 и 96
Найти высоту треугольника со сторонами 45, 43 и 18
Найти высоту треугольника со сторонами 132, 114 и 58
Найти высоту треугольника со сторонами 145, 96 и 69
Найти высоту треугольника со сторонами 79, 67 и 19
Найти высоту треугольника со сторонами 115, 81 и 67
Найти высоту треугольника со сторонами 45, 43 и 18
Найти высоту треугольника со сторонами 132, 114 и 58
Найти высоту треугольника со сторонами 145, 96 и 69
Найти высоту треугольника со сторонами 79, 67 и 19
Найти высоту треугольника со сторонами 115, 81 и 67