Рассчитать высоту треугольника со сторонами 144, 102 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 102 + 62}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-144)(154-102)(154-62)}}{102}\normalsize = 53.2213357}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-144)(154-102)(154-62)}}{144}\normalsize = 37.6984461}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-144)(154-102)(154-62)}}{62}\normalsize = 87.5576813}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 102 и 62 равна 53.2213357
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 102 и 62 равна 37.6984461
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 102 и 62 равна 87.5576813
Ссылка на результат
?n1=144&n2=102&n3=62
Найти высоту треугольника со сторонами 144, 142 и 94
Найти высоту треугольника со сторонами 98, 74 и 25
Найти высоту треугольника со сторонами 118, 101 и 95
Найти высоту треугольника со сторонами 150, 124 и 81
Найти высоту треугольника со сторонами 148, 142 и 60
Найти высоту треугольника со сторонами 144, 140 и 109
Найти высоту треугольника со сторонами 98, 74 и 25
Найти высоту треугольника со сторонами 118, 101 и 95
Найти высоту треугольника со сторонами 150, 124 и 81
Найти высоту треугольника со сторонами 148, 142 и 60
Найти высоту треугольника со сторонами 144, 140 и 109