Рассчитать высоту треугольника со сторонами 144, 102 и 94
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 102 + 94}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-144)(170-102)(170-94)}}{102}\normalsize = 93.7135114}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-144)(170-102)(170-94)}}{144}\normalsize = 66.3804039}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-144)(170-102)(170-94)}}{94}\normalsize = 101.689129}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 102 и 94 равна 93.7135114
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 102 и 94 равна 66.3804039
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 102 и 94 равна 101.689129
Ссылка на результат
?n1=144&n2=102&n3=94
Найти высоту треугольника со сторонами 136, 116 и 35
Найти высоту треугольника со сторонами 128, 109 и 48
Найти высоту треугольника со сторонами 106, 92 и 92
Найти высоту треугольника со сторонами 131, 106 и 102
Найти высоту треугольника со сторонами 131, 116 и 38
Найти высоту треугольника со сторонами 67, 54 и 46
Найти высоту треугольника со сторонами 128, 109 и 48
Найти высоту треугольника со сторонами 106, 92 и 92
Найти высоту треугольника со сторонами 131, 106 и 102
Найти высоту треугольника со сторонами 131, 116 и 38
Найти высоту треугольника со сторонами 67, 54 и 46