Рассчитать высоту треугольника со сторонами 144, 104 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 104 + 83}{2}} \normalsize = 165.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165.5(165.5-144)(165.5-104)(165.5-83)}}{104}\normalsize = 81.7107915}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165.5(165.5-144)(165.5-104)(165.5-83)}}{144}\normalsize = 59.0133494}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165.5(165.5-144)(165.5-104)(165.5-83)}}{83}\normalsize = 102.384606}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 104 и 83 равна 81.7107915
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 104 и 83 равна 59.0133494
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 104 и 83 равна 102.384606
Ссылка на результат
?n1=144&n2=104&n3=83
Найти высоту треугольника со сторонами 111, 92 и 87
Найти высоту треугольника со сторонами 115, 83 и 63
Найти высоту треугольника со сторонами 75, 59 и 52
Найти высоту треугольника со сторонами 88, 67 и 24
Найти высоту треугольника со сторонами 136, 136 и 25
Найти высоту треугольника со сторонами 144, 95 и 73
Найти высоту треугольника со сторонами 115, 83 и 63
Найти высоту треугольника со сторонами 75, 59 и 52
Найти высоту треугольника со сторонами 88, 67 и 24
Найти высоту треугольника со сторонами 136, 136 и 25
Найти высоту треугольника со сторонами 144, 95 и 73