Рассчитать высоту треугольника со сторонами 144, 110 и 45

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 110 + 45}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-144)(149.5-110)(149.5-45)}}{110}\normalsize = 33.4962311}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-144)(149.5-110)(149.5-45)}}{144}\normalsize = 25.5873988}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-144)(149.5-110)(149.5-45)}}{45}\normalsize = 81.8796761}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 110 и 45 равна 33.4962311
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 110 и 45 равна 25.5873988
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 110 и 45 равна 81.8796761
Ссылка на результат
?n1=144&n2=110&n3=45