Рассчитать высоту треугольника со сторонами 144, 113 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 113 + 63}{2}} \normalsize = 160}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160(160-144)(160-113)(160-63)}}{113}\normalsize = 60.4653166}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160(160-144)(160-113)(160-63)}}{144}\normalsize = 47.4484776}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160(160-144)(160-113)(160-63)}}{63}\normalsize = 108.453663}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 113 и 63 равна 60.4653166
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 113 и 63 равна 47.4484776
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 113 и 63 равна 108.453663
Ссылка на результат
?n1=144&n2=113&n3=63
Найти высоту треугольника со сторонами 150, 132 и 54
Найти высоту треугольника со сторонами 132, 90 и 90
Найти высоту треугольника со сторонами 125, 114 и 40
Найти высоту треугольника со сторонами 143, 77 и 76
Найти высоту треугольника со сторонами 132, 130 и 48
Найти высоту треугольника со сторонами 137, 114 и 109
Найти высоту треугольника со сторонами 132, 90 и 90
Найти высоту треугольника со сторонами 125, 114 и 40
Найти высоту треугольника со сторонами 143, 77 и 76
Найти высоту треугольника со сторонами 132, 130 и 48
Найти высоту треугольника со сторонами 137, 114 и 109