Рассчитать высоту треугольника со сторонами 144, 113 и 96
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 113 + 96}{2}} \normalsize = 176.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{176.5(176.5-144)(176.5-113)(176.5-96)}}{113}\normalsize = 95.8407912}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{176.5(176.5-144)(176.5-113)(176.5-96)}}{144}\normalsize = 75.2083987}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{176.5(176.5-144)(176.5-113)(176.5-96)}}{96}\normalsize = 112.812598}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 113 и 96 равна 95.8407912
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 113 и 96 равна 75.2083987
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 113 и 96 равна 112.812598
Ссылка на результат
?n1=144&n2=113&n3=96
Найти высоту треугольника со сторонами 149, 140 и 25
Найти высоту треугольника со сторонами 111, 101 и 61
Найти высоту треугольника со сторонами 121, 112 и 32
Найти высоту треугольника со сторонами 115, 78 и 39
Найти высоту треугольника со сторонами 94, 79 и 74
Найти высоту треугольника со сторонами 139, 120 и 112
Найти высоту треугольника со сторонами 111, 101 и 61
Найти высоту треугольника со сторонами 121, 112 и 32
Найти высоту треугольника со сторонами 115, 78 и 39
Найти высоту треугольника со сторонами 94, 79 и 74
Найти высоту треугольника со сторонами 139, 120 и 112