Рассчитать высоту треугольника со сторонами 144, 115 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 115 + 37}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-144)(148-115)(148-37)}}{115}\normalsize = 25.6101114}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-144)(148-115)(148-37)}}{144}\normalsize = 20.4525195}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-144)(148-115)(148-37)}}{37}\normalsize = 79.598995}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 115 и 37 равна 25.6101114
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 115 и 37 равна 20.4525195
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 115 и 37 равна 79.598995
Ссылка на результат
?n1=144&n2=115&n3=37
Найти высоту треугольника со сторонами 126, 118 и 21
Найти высоту треугольника со сторонами 138, 107 и 38
Найти высоту треугольника со сторонами 92, 84 и 73
Найти высоту треугольника со сторонами 143, 124 и 44
Найти высоту треугольника со сторонами 132, 114 и 59
Найти высоту треугольника со сторонами 141, 126 и 107
Найти высоту треугольника со сторонами 138, 107 и 38
Найти высоту треугольника со сторонами 92, 84 и 73
Найти высоту треугольника со сторонами 143, 124 и 44
Найти высоту треугольника со сторонами 132, 114 и 59
Найти высоту треугольника со сторонами 141, 126 и 107