Рассчитать высоту треугольника со сторонами 144, 118 и 93

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 118 + 93}{2}} \normalsize = 177.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{177.5(177.5-144)(177.5-118)(177.5-93)}}{118}\normalsize = 92.6736798}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{177.5(177.5-144)(177.5-118)(177.5-93)}}{144}\normalsize = 75.9409321}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{177.5(177.5-144)(177.5-118)(177.5-93)}}{93}\normalsize = 117.585959}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 118 и 93 равна 92.6736798
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 118 и 93 равна 75.9409321
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 118 и 93 равна 117.585959
Ссылка на результат
?n1=144&n2=118&n3=93