Рассчитать высоту треугольника со сторонами 144, 121 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 121 + 66}{2}} \normalsize = 165.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165.5(165.5-144)(165.5-121)(165.5-66)}}{121}\normalsize = 65.6076376}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165.5(165.5-144)(165.5-121)(165.5-66)}}{144}\normalsize = 55.12864}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165.5(165.5-144)(165.5-121)(165.5-66)}}{66}\normalsize = 120.280669}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 121 и 66 равна 65.6076376
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 121 и 66 равна 55.12864
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 121 и 66 равна 120.280669
Ссылка на результат
?n1=144&n2=121&n3=66
Найти высоту треугольника со сторонами 95, 82 и 33
Найти высоту треугольника со сторонами 117, 92 и 46
Найти высоту треугольника со сторонами 72, 69 и 49
Найти высоту треугольника со сторонами 132, 108 и 103
Найти высоту треугольника со сторонами 136, 106 и 58
Найти высоту треугольника со сторонами 146, 122 и 32
Найти высоту треугольника со сторонами 117, 92 и 46
Найти высоту треугольника со сторонами 72, 69 и 49
Найти высоту треугольника со сторонами 132, 108 и 103
Найти высоту треугольника со сторонами 136, 106 и 58
Найти высоту треугольника со сторонами 146, 122 и 32