Рассчитать высоту треугольника со сторонами 144, 122 и 89
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 122 + 89}{2}} \normalsize = 177.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{177.5(177.5-144)(177.5-122)(177.5-89)}}{122}\normalsize = 88.595135}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{177.5(177.5-144)(177.5-122)(177.5-89)}}{144}\normalsize = 75.0597671}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{177.5(177.5-144)(177.5-122)(177.5-89)}}{89}\normalsize = 121.445016}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 122 и 89 равна 88.595135
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 122 и 89 равна 75.0597671
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 122 и 89 равна 121.445016
Ссылка на результат
?n1=144&n2=122&n3=89
Найти высоту треугольника со сторонами 93, 63 и 32
Найти высоту треугольника со сторонами 57, 54 и 52
Найти высоту треугольника со сторонами 118, 105 и 75
Найти высоту треугольника со сторонами 53, 43 и 21
Найти высоту треугольника со сторонами 147, 144 и 122
Найти высоту треугольника со сторонами 141, 101 и 59
Найти высоту треугольника со сторонами 57, 54 и 52
Найти высоту треугольника со сторонами 118, 105 и 75
Найти высоту треугольника со сторонами 53, 43 и 21
Найти высоту треугольника со сторонами 147, 144 и 122
Найти высоту треугольника со сторонами 141, 101 и 59