Рассчитать высоту треугольника со сторонами 144, 124 и 119
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 124 + 119}{2}} \normalsize = 193.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{193.5(193.5-144)(193.5-124)(193.5-119)}}{124}\normalsize = 113.585249}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{193.5(193.5-144)(193.5-124)(193.5-119)}}{144}\normalsize = 97.8095197}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{193.5(193.5-144)(193.5-124)(193.5-119)}}{119}\normalsize = 118.357738}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 124 и 119 равна 113.585249
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 124 и 119 равна 97.8095197
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 124 и 119 равна 118.357738
Ссылка на результат
?n1=144&n2=124&n3=119
Найти высоту треугольника со сторонами 149, 109 и 60
Найти высоту треугольника со сторонами 82, 73 и 39
Найти высоту треугольника со сторонами 132, 121 и 85
Найти высоту треугольника со сторонами 116, 110 и 40
Найти высоту треугольника со сторонами 111, 90 и 57
Найти высоту треугольника со сторонами 105, 86 и 35
Найти высоту треугольника со сторонами 82, 73 и 39
Найти высоту треугольника со сторонами 132, 121 и 85
Найти высоту треугольника со сторонами 116, 110 и 40
Найти высоту треугольника со сторонами 111, 90 и 57
Найти высоту треугольника со сторонами 105, 86 и 35