Рассчитать высоту треугольника со сторонами 144, 124 и 37

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 124 + 37}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-144)(152.5-124)(152.5-37)}}{124}\normalsize = 33.3170175}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-144)(152.5-124)(152.5-37)}}{144}\normalsize = 28.689654}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-144)(152.5-124)(152.5-37)}}{37}\normalsize = 111.657032}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 124 и 37 равна 33.3170175
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 124 и 37 равна 28.689654
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 124 и 37 равна 111.657032
Ссылка на результат
?n1=144&n2=124&n3=37