Рассчитать высоту треугольника со сторонами 144, 125 и 53

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
p=a+b+c2\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
S=p(pa)(pb)(pc)\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
S=12bhb\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
12bhb=p(pa)(pb)(pc)\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
hb=2p(pa)(pb)(pc)b\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
ha=2p(pa)(pb)(pc)a\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
hc=2p(pa)(pb)(pc)c\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
p=144+125+532=161\color{#0000FF}{p = \Large{\frac{144 + 125 + 53}{2}} \normalsize = 161}
hb=2161(161144)(161125)(16153)125=52.1939914\color{#0000FF}{h_b = \Large\frac{2\sqrt{161(161-144)(161-125)(161-53)}}{125}\normalsize = 52.1939914}
ha=2161(161144)(161125)(16153)144=45.3072842\color{#0000FF}{h_a = \Large\frac{2\sqrt{161(161-144)(161-125)(161-53)}}{144}\normalsize = 45.3072842}
hc=2161(161144)(161125)(16153)53=123.099036\color{#0000FF}{h_c = \Large\frac{2\sqrt{161(161-144)(161-125)(161-53)}}{53}\normalsize = 123.099036}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 125 и 53 равна 52.1939914
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 125 и 53 равна 45.3072842
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 125 и 53 равна 123.099036
Ссылка на результат
?n1=144&n2=125&n3=53