Рассчитать высоту треугольника со сторонами 144, 130 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 130 + 33}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-144)(153.5-130)(153.5-33)}}{130}\normalsize = 31.2629597}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-144)(153.5-130)(153.5-33)}}{144}\normalsize = 28.2235053}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-144)(153.5-130)(153.5-33)}}{33}\normalsize = 123.157114}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 130 и 33 равна 31.2629597
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 130 и 33 равна 28.2235053
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 130 и 33 равна 123.157114
Ссылка на результат
?n1=144&n2=130&n3=33
Найти высоту треугольника со сторонами 77, 47 и 39
Найти высоту треугольника со сторонами 124, 101 и 41
Найти высоту треугольника со сторонами 124, 110 и 77
Найти высоту треугольника со сторонами 85, 50 и 50
Найти высоту треугольника со сторонами 139, 132 и 71
Найти высоту треугольника со сторонами 86, 57 и 56
Найти высоту треугольника со сторонами 124, 101 и 41
Найти высоту треугольника со сторонами 124, 110 и 77
Найти высоту треугольника со сторонами 85, 50 и 50
Найти высоту треугольника со сторонами 139, 132 и 71
Найти высоту треугольника со сторонами 86, 57 и 56