Рассчитать высоту треугольника со сторонами 144, 135 и 97
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 135 + 97}{2}} \normalsize = 188}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{188(188-144)(188-135)(188-97)}}{135}\normalsize = 93.5750615}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{188(188-144)(188-135)(188-97)}}{144}\normalsize = 87.7266201}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{188(188-144)(188-135)(188-97)}}{97}\normalsize = 130.233333}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 135 и 97 равна 93.5750615
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 135 и 97 равна 87.7266201
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 135 и 97 равна 130.233333
Ссылка на результат
?n1=144&n2=135&n3=97
Найти высоту треугольника со сторонами 111, 72 и 42
Найти высоту треугольника со сторонами 130, 124 и 118
Найти высоту треугольника со сторонами 67, 55 и 16
Найти высоту треугольника со сторонами 110, 93 и 78
Найти высоту треугольника со сторонами 94, 86 и 68
Найти высоту треугольника со сторонами 129, 99 и 58
Найти высоту треугольника со сторонами 130, 124 и 118
Найти высоту треугольника со сторонами 67, 55 и 16
Найти высоту треугольника со сторонами 110, 93 и 78
Найти высоту треугольника со сторонами 94, 86 и 68
Найти высоту треугольника со сторонами 129, 99 и 58