Рассчитать высоту треугольника со сторонами 144, 136 и 134
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 136 + 134}{2}} \normalsize = 207}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{207(207-144)(207-136)(207-134)}}{136}\normalsize = 120.903017}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{207(207-144)(207-136)(207-134)}}{144}\normalsize = 114.186183}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{207(207-144)(207-136)(207-134)}}{134}\normalsize = 122.70754}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 136 и 134 равна 120.903017
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 136 и 134 равна 114.186183
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 136 и 134 равна 122.70754
Ссылка на результат
?n1=144&n2=136&n3=134
Найти высоту треугольника со сторонами 142, 123 и 65
Найти высоту треугольника со сторонами 141, 125 и 67
Найти высоту треугольника со сторонами 149, 117 и 101
Найти высоту треугольника со сторонами 87, 70 и 26
Найти высоту треугольника со сторонами 128, 113 и 76
Найти высоту треугольника со сторонами 60, 51 и 46
Найти высоту треугольника со сторонами 141, 125 и 67
Найти высоту треугольника со сторонами 149, 117 и 101
Найти высоту треугольника со сторонами 87, 70 и 26
Найти высоту треугольника со сторонами 128, 113 и 76
Найти высоту треугольника со сторонами 60, 51 и 46