Рассчитать высоту треугольника со сторонами 144, 137 и 135
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 137 + 135}{2}} \normalsize = 208}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{208(208-144)(208-137)(208-135)}}{137}\normalsize = 121.261151}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{208(208-144)(208-137)(208-135)}}{144}\normalsize = 115.366512}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{208(208-144)(208-137)(208-135)}}{135}\normalsize = 123.057613}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 137 и 135 равна 121.261151
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 137 и 135 равна 115.366512
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 137 и 135 равна 123.057613
Ссылка на результат
?n1=144&n2=137&n3=135
Найти высоту треугольника со сторонами 114, 69 и 60
Найти высоту треугольника со сторонами 31, 28 и 14
Найти высоту треугольника со сторонами 105, 102 и 51
Найти высоту треугольника со сторонами 126, 112 и 42
Найти высоту треугольника со сторонами 30, 26 и 7
Найти высоту треугольника со сторонами 131, 106 и 87
Найти высоту треугольника со сторонами 31, 28 и 14
Найти высоту треугольника со сторонами 105, 102 и 51
Найти высоту треугольника со сторонами 126, 112 и 42
Найти высоту треугольника со сторонами 30, 26 и 7
Найти высоту треугольника со сторонами 131, 106 и 87