Рассчитать высоту треугольника со сторонами 144, 137 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 137 + 14}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-144)(147.5-137)(147.5-14)}}{137}\normalsize = 12.4186602}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-144)(147.5-137)(147.5-14)}}{144}\normalsize = 11.8149753}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-144)(147.5-137)(147.5-14)}}{14}\normalsize = 121.52546}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 137 и 14 равна 12.4186602
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 137 и 14 равна 11.8149753
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 137 и 14 равна 121.52546
Ссылка на результат
?n1=144&n2=137&n3=14
Найти высоту треугольника со сторонами 140, 140 и 135
Найти высоту треугольника со сторонами 139, 80 и 76
Найти высоту треугольника со сторонами 139, 139 и 100
Найти высоту треугольника со сторонами 148, 138 и 81
Найти высоту треугольника со сторонами 134, 96 и 86
Найти высоту треугольника со сторонами 115, 81 и 36
Найти высоту треугольника со сторонами 139, 80 и 76
Найти высоту треугольника со сторонами 139, 139 и 100
Найти высоту треугольника со сторонами 148, 138 и 81
Найти высоту треугольника со сторонами 134, 96 и 86
Найти высоту треугольника со сторонами 115, 81 и 36