Рассчитать высоту треугольника со сторонами 144, 140 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 140 + 55}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-144)(169.5-140)(169.5-55)}}{140}\normalsize = 54.5846654}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-144)(169.5-140)(169.5-55)}}{144}\normalsize = 53.0684247}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-144)(169.5-140)(169.5-55)}}{55}\normalsize = 138.942785}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 140 и 55 равна 54.5846654
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 140 и 55 равна 53.0684247
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 140 и 55 равна 138.942785
Ссылка на результат
?n1=144&n2=140&n3=55
Найти высоту треугольника со сторонами 146, 122 и 60
Найти высоту треугольника со сторонами 139, 118 и 95
Найти высоту треугольника со сторонами 127, 69 и 68
Найти высоту треугольника со сторонами 86, 83 и 75
Найти высоту треугольника со сторонами 107, 95 и 42
Найти высоту треугольника со сторонами 114, 111 и 58
Найти высоту треугольника со сторонами 139, 118 и 95
Найти высоту треугольника со сторонами 127, 69 и 68
Найти высоту треугольника со сторонами 86, 83 и 75
Найти высоту треугольника со сторонами 107, 95 и 42
Найти высоту треугольника со сторонами 114, 111 и 58