Рассчитать высоту треугольника со сторонами 144, 141 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 141 + 13}{2}} \normalsize = 149}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149(149-144)(149-141)(149-13)}}{141}\normalsize = 12.7703696}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149(149-144)(149-141)(149-13)}}{144}\normalsize = 12.5043202}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149(149-144)(149-141)(149-13)}}{13}\normalsize = 138.509393}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 141 и 13 равна 12.7703696
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 141 и 13 равна 12.5043202
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 141 и 13 равна 138.509393
Ссылка на результат
?n1=144&n2=141&n3=13
Найти высоту треугольника со сторонами 130, 112 и 69
Найти высоту треугольника со сторонами 34, 27 и 18
Найти высоту треугольника со сторонами 137, 109 и 59
Найти высоту треугольника со сторонами 121, 117 и 70
Найти высоту треугольника со сторонами 67, 64 и 47
Найти высоту треугольника со сторонами 136, 126 и 112
Найти высоту треугольника со сторонами 34, 27 и 18
Найти высоту треугольника со сторонами 137, 109 и 59
Найти высоту треугольника со сторонами 121, 117 и 70
Найти высоту треугольника со сторонами 67, 64 и 47
Найти высоту треугольника со сторонами 136, 126 и 112