Рассчитать высоту треугольника со сторонами 144, 141 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 141 + 50}{2}} \normalsize = 167.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167.5(167.5-144)(167.5-141)(167.5-50)}}{141}\normalsize = 49.6585564}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167.5(167.5-144)(167.5-141)(167.5-50)}}{144}\normalsize = 48.6240031}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167.5(167.5-144)(167.5-141)(167.5-50)}}{50}\normalsize = 140.037129}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 141 и 50 равна 49.6585564
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 141 и 50 равна 48.6240031
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 141 и 50 равна 140.037129
Ссылка на результат
?n1=144&n2=141&n3=50
Найти высоту треугольника со сторонами 137, 103 и 53
Найти высоту треугольника со сторонами 130, 114 и 28
Найти высоту треугольника со сторонами 27, 18 и 10
Найти высоту треугольника со сторонами 114, 77 и 73
Найти высоту треугольника со сторонами 148, 113 и 49
Найти высоту треугольника со сторонами 125, 112 и 94
Найти высоту треугольника со сторонами 130, 114 и 28
Найти высоту треугольника со сторонами 27, 18 и 10
Найти высоту треугольника со сторонами 114, 77 и 73
Найти высоту треугольника со сторонами 148, 113 и 49
Найти высоту треугольника со сторонами 125, 112 и 94