Рассчитать высоту треугольника со сторонами 144, 80 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 80 + 73}{2}} \normalsize = 148.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148.5(148.5-144)(148.5-80)(148.5-73)}}{80}\normalsize = 46.4759477}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148.5(148.5-144)(148.5-80)(148.5-73)}}{144}\normalsize = 25.8199709}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148.5(148.5-144)(148.5-80)(148.5-73)}}{73}\normalsize = 50.9325454}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 80 и 73 равна 46.4759477
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 80 и 73 равна 25.8199709
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 80 и 73 равна 50.9325454
Ссылка на результат
?n1=144&n2=80&n3=73
Найти высоту треугольника со сторонами 132, 78 и 76
Найти высоту треугольника со сторонами 118, 84 и 41
Найти высоту треугольника со сторонами 86, 86 и 71
Найти высоту треугольника со сторонами 84, 64 и 57
Найти высоту треугольника со сторонами 91, 82 и 23
Найти высоту треугольника со сторонами 145, 140 и 15
Найти высоту треугольника со сторонами 118, 84 и 41
Найти высоту треугольника со сторонами 86, 86 и 71
Найти высоту треугольника со сторонами 84, 64 и 57
Найти высоту треугольника со сторонами 91, 82 и 23
Найти высоту треугольника со сторонами 145, 140 и 15