Рассчитать высоту треугольника со сторонами 144, 82 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 82 + 75}{2}} \normalsize = 150.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150.5(150.5-144)(150.5-82)(150.5-75)}}{82}\normalsize = 54.8605091}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150.5(150.5-144)(150.5-82)(150.5-75)}}{144}\normalsize = 31.2400121}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150.5(150.5-144)(150.5-82)(150.5-75)}}{75}\normalsize = 59.9808232}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 82 и 75 равна 54.8605091
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 82 и 75 равна 31.2400121
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 82 и 75 равна 59.9808232
Ссылка на результат
?n1=144&n2=82&n3=75
Найти высоту треугольника со сторонами 100, 94 и 48
Найти высоту треугольника со сторонами 114, 107 и 103
Найти высоту треугольника со сторонами 137, 124 и 46
Найти высоту треугольника со сторонами 150, 96 и 83
Найти высоту треугольника со сторонами 114, 106 и 61
Найти высоту треугольника со сторонами 146, 105 и 63
Найти высоту треугольника со сторонами 114, 107 и 103
Найти высоту треугольника со сторонами 137, 124 и 46
Найти высоту треугольника со сторонами 150, 96 и 83
Найти высоту треугольника со сторонами 114, 106 и 61
Найти высоту треугольника со сторонами 146, 105 и 63