Рассчитать высоту треугольника со сторонами 145, 100 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 100 + 63}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-145)(154-100)(154-63)}}{100}\normalsize = 52.1950342}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-145)(154-100)(154-63)}}{145}\normalsize = 35.9965753}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-145)(154-100)(154-63)}}{63}\normalsize = 82.8492607}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 100 и 63 равна 52.1950342
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 100 и 63 равна 35.9965753
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 100 и 63 равна 82.8492607
Ссылка на результат
?n1=145&n2=100&n3=63
Найти высоту треугольника со сторонами 79, 78 и 74
Найти высоту треугольника со сторонами 125, 103 и 30
Найти высоту треугольника со сторонами 147, 135 и 85
Найти высоту треугольника со сторонами 144, 118 и 98
Найти высоту треугольника со сторонами 138, 134 и 64
Найти высоту треугольника со сторонами 148, 140 и 111
Найти высоту треугольника со сторонами 125, 103 и 30
Найти высоту треугольника со сторонами 147, 135 и 85
Найти высоту треугольника со сторонами 144, 118 и 98
Найти высоту треугольника со сторонами 138, 134 и 64
Найти высоту треугольника со сторонами 148, 140 и 111