Рассчитать высоту треугольника со сторонами 145, 114 и 46

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 114 + 46}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-145)(152.5-114)(152.5-46)}}{114}\normalsize = 37.9923245}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-145)(152.5-114)(152.5-46)}}{145}\normalsize = 29.8698276}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-145)(152.5-114)(152.5-46)}}{46}\normalsize = 94.1548913}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 114 и 46 равна 37.9923245
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 114 и 46 равна 29.8698276
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 114 и 46 равна 94.1548913
Ссылка на результат
?n1=145&n2=114&n3=46