Рассчитать высоту треугольника со сторонами 145, 114 и 91
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 114 + 91}{2}} \normalsize = 175}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175(175-145)(175-114)(175-91)}}{114}\normalsize = 90.9932876}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175(175-145)(175-114)(175-91)}}{145}\normalsize = 71.5395503}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175(175-145)(175-114)(175-91)}}{91}\normalsize = 113.991591}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 114 и 91 равна 90.9932876
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 114 и 91 равна 71.5395503
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 114 и 91 равна 113.991591
Ссылка на результат
?n1=145&n2=114&n3=91
Найти высоту треугольника со сторонами 142, 128 и 126
Найти высоту треугольника со сторонами 93, 63 и 49
Найти высоту треугольника со сторонами 125, 112 и 83
Найти высоту треугольника со сторонами 145, 132 и 108
Найти высоту треугольника со сторонами 68, 67 и 37
Найти высоту треугольника со сторонами 108, 95 и 69
Найти высоту треугольника со сторонами 93, 63 и 49
Найти высоту треугольника со сторонами 125, 112 и 83
Найти высоту треугольника со сторонами 145, 132 и 108
Найти высоту треугольника со сторонами 68, 67 и 37
Найти высоту треугольника со сторонами 108, 95 и 69