Рассчитать высоту треугольника со сторонами 145, 115 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 115 + 56}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-145)(158-115)(158-56)}}{115}\normalsize = 52.1995415}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-145)(158-115)(158-56)}}{145}\normalsize = 41.3996364}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-145)(158-115)(158-56)}}{56}\normalsize = 107.195487}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 115 и 56 равна 52.1995415
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 115 и 56 равна 41.3996364
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 115 и 56 равна 107.195487
Ссылка на результат
?n1=145&n2=115&n3=56
Найти высоту треугольника со сторонами 123, 98 и 56
Найти высоту треугольника со сторонами 17, 16 и 15
Найти высоту треугольника со сторонами 129, 122 и 11
Найти высоту треугольника со сторонами 106, 105 и 9
Найти высоту треугольника со сторонами 121, 108 и 34
Найти высоту треугольника со сторонами 150, 128 и 46
Найти высоту треугольника со сторонами 17, 16 и 15
Найти высоту треугольника со сторонами 129, 122 и 11
Найти высоту треугольника со сторонами 106, 105 и 9
Найти высоту треугольника со сторонами 121, 108 и 34
Найти высоту треугольника со сторонами 150, 128 и 46