Рассчитать высоту треугольника со сторонами 145, 115 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 115 + 93}{2}} \normalsize = 176.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{176.5(176.5-145)(176.5-115)(176.5-93)}}{115}\normalsize = 92.9267145}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{176.5(176.5-145)(176.5-115)(176.5-93)}}{145}\normalsize = 73.7004977}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{176.5(176.5-145)(176.5-115)(176.5-93)}}{93}\normalsize = 114.909378}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 115 и 93 равна 92.9267145
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 115 и 93 равна 73.7004977
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 115 и 93 равна 114.909378
Ссылка на результат
?n1=145&n2=115&n3=93
Найти высоту треугольника со сторонами 134, 100 и 94
Найти высоту треугольника со сторонами 129, 111 и 49
Найти высоту треугольника со сторонами 104, 96 и 40
Найти высоту треугольника со сторонами 73, 68 и 40
Найти высоту треугольника со сторонами 132, 114 и 88
Найти высоту треугольника со сторонами 140, 118 и 23
Найти высоту треугольника со сторонами 129, 111 и 49
Найти высоту треугольника со сторонами 104, 96 и 40
Найти высоту треугольника со сторонами 73, 68 и 40
Найти высоту треугольника со сторонами 132, 114 и 88
Найти высоту треугольника со сторонами 140, 118 и 23