Рассчитать высоту треугольника со сторонами 145, 118 и 116

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 118 + 116}{2}} \normalsize = 189.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{189.5(189.5-145)(189.5-118)(189.5-116)}}{118}\normalsize = 112.831222}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{189.5(189.5-145)(189.5-118)(189.5-116)}}{145}\normalsize = 91.8212703}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{189.5(189.5-145)(189.5-118)(189.5-116)}}{116}\normalsize = 114.776588}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 118 и 116 равна 112.831222
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 118 и 116 равна 91.8212703
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 118 и 116 равна 114.776588
Ссылка на результат
?n1=145&n2=118&n3=116