Рассчитать высоту треугольника со сторонами 145, 122 и 80

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 122 + 80}{2}} \normalsize = 173.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173.5(173.5-145)(173.5-122)(173.5-80)}}{122}\normalsize = 79.9929576}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173.5(173.5-145)(173.5-122)(173.5-80)}}{145}\normalsize = 67.3044195}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173.5(173.5-145)(173.5-122)(173.5-80)}}{80}\normalsize = 121.98926}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 122 и 80 равна 79.9929576
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 122 и 80 равна 67.3044195
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 122 и 80 равна 121.98926
Ссылка на результат
?n1=145&n2=122&n3=80