Рассчитать высоту треугольника со сторонами 145, 125 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 125 + 50}{2}} \normalsize = 160}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160(160-145)(160-125)(160-50)}}{125}\normalsize = 48.6357893}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160(160-145)(160-125)(160-50)}}{145}\normalsize = 41.9274046}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160(160-145)(160-125)(160-50)}}{50}\normalsize = 121.589473}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 125 и 50 равна 48.6357893
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 125 и 50 равна 41.9274046
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 125 и 50 равна 121.589473
Ссылка на результат
?n1=145&n2=125&n3=50
Найти высоту треугольника со сторонами 106, 87 и 38
Найти высоту треугольника со сторонами 150, 123 и 92
Найти высоту треугольника со сторонами 90, 64 и 39
Найти высоту треугольника со сторонами 109, 76 и 39
Найти высоту треугольника со сторонами 142, 127 и 109
Найти высоту треугольника со сторонами 112, 100 и 75
Найти высоту треугольника со сторонами 150, 123 и 92
Найти высоту треугольника со сторонами 90, 64 и 39
Найти высоту треугольника со сторонами 109, 76 и 39
Найти высоту треугольника со сторонами 142, 127 и 109
Найти высоту треугольника со сторонами 112, 100 и 75