Рассчитать высоту треугольника со сторонами 145, 125 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 125 + 86}{2}} \normalsize = 178}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{178(178-145)(178-125)(178-86)}}{125}\normalsize = 85.6285919}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{178(178-145)(178-125)(178-86)}}{145}\normalsize = 73.8177516}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{178(178-145)(178-125)(178-86)}}{86}\normalsize = 124.460163}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 125 и 86 равна 85.6285919
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 125 и 86 равна 73.8177516
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 125 и 86 равна 124.460163
Ссылка на результат
?n1=145&n2=125&n3=86
Найти высоту треугольника со сторонами 67, 63 и 11
Найти высоту треугольника со сторонами 134, 134 и 83
Найти высоту треугольника со сторонами 102, 85 и 60
Найти высоту треугольника со сторонами 138, 132 и 101
Найти высоту треугольника со сторонами 124, 97 и 66
Найти высоту треугольника со сторонами 87, 85 и 9
Найти высоту треугольника со сторонами 134, 134 и 83
Найти высоту треугольника со сторонами 102, 85 и 60
Найти высоту треугольника со сторонами 138, 132 и 101
Найти высоту треугольника со сторонами 124, 97 и 66
Найти высоту треугольника со сторонами 87, 85 и 9