Рассчитать высоту треугольника со сторонами 145, 134 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 134 + 68}{2}} \normalsize = 173.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173.5(173.5-145)(173.5-134)(173.5-68)}}{134}\normalsize = 67.7520038}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173.5(173.5-145)(173.5-134)(173.5-68)}}{145}\normalsize = 62.6121967}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173.5(173.5-145)(173.5-134)(173.5-68)}}{68}\normalsize = 133.511302}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 134 и 68 равна 67.7520038
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 134 и 68 равна 62.6121967
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 134 и 68 равна 133.511302
Ссылка на результат
?n1=145&n2=134&n3=68
Найти высоту треугольника со сторонами 144, 121 и 85
Найти высоту треугольника со сторонами 149, 88 и 78
Найти высоту треугольника со сторонами 150, 131 и 103
Найти высоту треугольника со сторонами 117, 115 и 71
Найти высоту треугольника со сторонами 110, 96 и 59
Найти высоту треугольника со сторонами 123, 92 и 74
Найти высоту треугольника со сторонами 149, 88 и 78
Найти высоту треугольника со сторонами 150, 131 и 103
Найти высоту треугольника со сторонами 117, 115 и 71
Найти высоту треугольника со сторонами 110, 96 и 59
Найти высоту треугольника со сторонами 123, 92 и 74