Рассчитать высоту треугольника со сторонами 145, 136 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 136 + 75}{2}} \normalsize = 178}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{178(178-145)(178-136)(178-75)}}{136}\normalsize = 74.1312488}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{178(178-145)(178-136)(178-75)}}{145}\normalsize = 69.5299988}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{178(178-145)(178-136)(178-75)}}{75}\normalsize = 134.424664}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 136 и 75 равна 74.1312488
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 136 и 75 равна 69.5299988
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 136 и 75 равна 134.424664
Ссылка на результат
?n1=145&n2=136&n3=75
Найти высоту треугольника со сторонами 119, 73 и 49
Найти высоту треугольника со сторонами 120, 116 и 42
Найти высоту треугольника со сторонами 106, 80 и 36
Найти высоту треугольника со сторонами 141, 130 и 41
Найти высоту треугольника со сторонами 145, 122 и 28
Найти высоту треугольника со сторонами 90, 81 и 38
Найти высоту треугольника со сторонами 120, 116 и 42
Найти высоту треугольника со сторонами 106, 80 и 36
Найти высоту треугольника со сторонами 141, 130 и 41
Найти высоту треугольника со сторонами 145, 122 и 28
Найти высоту треугольника со сторонами 90, 81 и 38