Рассчитать высоту треугольника со сторонами 145, 137 и 123
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 137 + 123}{2}} \normalsize = 202.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{202.5(202.5-145)(202.5-137)(202.5-123)}}{137}\normalsize = 113.673722}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{202.5(202.5-145)(202.5-137)(202.5-123)}}{145}\normalsize = 107.402068}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{202.5(202.5-145)(202.5-137)(202.5-123)}}{123}\normalsize = 126.612194}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 137 и 123 равна 113.673722
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 137 и 123 равна 107.402068
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 137 и 123 равна 126.612194
Ссылка на результат
?n1=145&n2=137&n3=123
Найти высоту треугольника со сторонами 145, 99 и 68
Найти высоту треугольника со сторонами 85, 70 и 39
Найти высоту треугольника со сторонами 135, 126 и 49
Найти высоту треугольника со сторонами 132, 88 и 85
Найти высоту треугольника со сторонами 103, 75 и 65
Найти высоту треугольника со сторонами 94, 91 и 64
Найти высоту треугольника со сторонами 85, 70 и 39
Найти высоту треугольника со сторонами 135, 126 и 49
Найти высоту треугольника со сторонами 132, 88 и 85
Найти высоту треугольника со сторонами 103, 75 и 65
Найти высоту треугольника со сторонами 94, 91 и 64