Рассчитать высоту треугольника со сторонами 145, 138 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 138 + 57}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-145)(170-138)(170-57)}}{138}\normalsize = 56.8145518}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-145)(170-138)(170-57)}}{145}\normalsize = 54.0717804}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-145)(170-138)(170-57)}}{57}\normalsize = 137.55102}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 138 и 57 равна 56.8145518
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 138 и 57 равна 54.0717804
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 138 и 57 равна 137.55102
Ссылка на результат
?n1=145&n2=138&n3=57
Найти высоту треугольника со сторонами 126, 112 и 96
Найти высоту треугольника со сторонами 120, 84 и 70
Найти высоту треугольника со сторонами 143, 115 и 50
Найти высоту треугольника со сторонами 136, 124 и 35
Найти высоту треугольника со сторонами 142, 126 и 119
Найти высоту треугольника со сторонами 88, 65 и 54
Найти высоту треугольника со сторонами 120, 84 и 70
Найти высоту треугольника со сторонами 143, 115 и 50
Найти высоту треугольника со сторонами 136, 124 и 35
Найти высоту треугольника со сторонами 142, 126 и 119
Найти высоту треугольника со сторонами 88, 65 и 54