Рассчитать высоту треугольника со сторонами 145, 140 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 140 + 26}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-145)(155.5-140)(155.5-26)}}{140}\normalsize = 25.8620257}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-145)(155.5-140)(155.5-26)}}{145}\normalsize = 24.9702317}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-145)(155.5-140)(155.5-26)}}{26}\normalsize = 139.257062}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 140 и 26 равна 25.8620257
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 140 и 26 равна 24.9702317
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 140 и 26 равна 139.257062
Ссылка на результат
?n1=145&n2=140&n3=26
Найти высоту треугольника со сторонами 142, 118 и 35
Найти высоту треугольника со сторонами 139, 122 и 76
Найти высоту треугольника со сторонами 133, 130 и 93
Найти высоту треугольника со сторонами 144, 136 и 48
Найти высоту треугольника со сторонами 142, 142 и 41
Найти высоту треугольника со сторонами 110, 102 и 63
Найти высоту треугольника со сторонами 139, 122 и 76
Найти высоту треугольника со сторонами 133, 130 и 93
Найти высоту треугольника со сторонами 144, 136 и 48
Найти высоту треугольника со сторонами 142, 142 и 41
Найти высоту треугольника со сторонами 110, 102 и 63