Рассчитать высоту треугольника со сторонами 145, 141 и 138
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 141 + 138}{2}} \normalsize = 212}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{212(212-145)(212-141)(212-138)}}{141}\normalsize = 122.535309}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{212(212-145)(212-141)(212-138)}}{145}\normalsize = 119.155024}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{212(212-145)(212-141)(212-138)}}{138}\normalsize = 125.19912}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 141 и 138 равна 122.535309
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 141 и 138 равна 119.155024
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 141 и 138 равна 125.19912
Ссылка на результат
?n1=145&n2=141&n3=138
Найти высоту треугольника со сторонами 119, 88 и 34
Найти высоту треугольника со сторонами 27, 24 и 12
Найти высоту треугольника со сторонами 124, 109 и 21
Найти высоту треугольника со сторонами 90, 70 и 24
Найти высоту треугольника со сторонами 54, 46 и 17
Найти высоту треугольника со сторонами 35, 27 и 15
Найти высоту треугольника со сторонами 27, 24 и 12
Найти высоту треугольника со сторонами 124, 109 и 21
Найти высоту треугольника со сторонами 90, 70 и 24
Найти высоту треугольника со сторонами 54, 46 и 17
Найти высоту треугольника со сторонами 35, 27 и 15