Рассчитать высоту треугольника со сторонами 145, 143 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 143 + 46}{2}} \normalsize = 167}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167(167-145)(167-143)(167-46)}}{143}\normalsize = 45.6837599}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167(167-145)(167-143)(167-46)}}{145}\normalsize = 45.0536391}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167(167-145)(167-143)(167-46)}}{46}\normalsize = 142.016906}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 143 и 46 равна 45.6837599
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 143 и 46 равна 45.0536391
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 143 и 46 равна 142.016906
Ссылка на результат
?n1=145&n2=143&n3=46
Найти высоту треугольника со сторонами 118, 109 и 88
Найти высоту треугольника со сторонами 143, 129 и 129
Найти высоту треугольника со сторонами 125, 122 и 20
Найти высоту треугольника со сторонами 133, 116 и 77
Найти высоту треугольника со сторонами 114, 107 и 76
Найти высоту треугольника со сторонами 130, 118 и 92
Найти высоту треугольника со сторонами 143, 129 и 129
Найти высоту треугольника со сторонами 125, 122 и 20
Найти высоту треугольника со сторонами 133, 116 и 77
Найти высоту треугольника со сторонами 114, 107 и 76
Найти высоту треугольника со сторонами 130, 118 и 92