Рассчитать высоту треугольника со сторонами 145, 144 и 119
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 144 + 119}{2}} \normalsize = 204}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{204(204-145)(204-144)(204-119)}}{144}\normalsize = 108.816231}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{204(204-145)(204-144)(204-119)}}{145}\normalsize = 108.065775}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{204(204-145)(204-144)(204-119)}}{119}\normalsize = 131.676784}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 144 и 119 равна 108.816231
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 144 и 119 равна 108.065775
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 144 и 119 равна 131.676784
Ссылка на результат
?n1=145&n2=144&n3=119
Найти высоту треугольника со сторонами 122, 120 и 103
Найти высоту треугольника со сторонами 132, 131 и 88
Найти высоту треугольника со сторонами 101, 53 и 50
Найти высоту треугольника со сторонами 98, 66 и 63
Найти высоту треугольника со сторонами 85, 63 и 61
Найти высоту треугольника со сторонами 143, 89 и 64
Найти высоту треугольника со сторонами 132, 131 и 88
Найти высоту треугольника со сторонами 101, 53 и 50
Найти высоту треугольника со сторонами 98, 66 и 63
Найти высоту треугольника со сторонами 85, 63 и 61
Найти высоту треугольника со сторонами 143, 89 и 64