Рассчитать высоту треугольника со сторонами 145, 144 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 144 + 14}{2}} \normalsize = 151.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151.5(151.5-145)(151.5-144)(151.5-14)}}{144}\normalsize = 13.9962754}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151.5(151.5-145)(151.5-144)(151.5-14)}}{145}\normalsize = 13.8997494}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151.5(151.5-145)(151.5-144)(151.5-14)}}{14}\normalsize = 143.96169}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 144 и 14 равна 13.9962754
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 144 и 14 равна 13.8997494
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 144 и 14 равна 143.96169
Ссылка на результат
?n1=145&n2=144&n3=14
Найти высоту треугольника со сторонами 101, 74 и 55
Найти высоту треугольника со сторонами 137, 96 и 73
Найти высоту треугольника со сторонами 118, 95 и 27
Найти высоту треугольника со сторонами 119, 65 и 62
Найти высоту треугольника со сторонами 35, 26 и 13
Найти высоту треугольника со сторонами 90, 76 и 73
Найти высоту треугольника со сторонами 137, 96 и 73
Найти высоту треугольника со сторонами 118, 95 и 27
Найти высоту треугольника со сторонами 119, 65 и 62
Найти высоту треугольника со сторонами 35, 26 и 13
Найти высоту треугольника со сторонами 90, 76 и 73