Рассчитать высоту треугольника со сторонами 145, 145 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 145 + 82}{2}} \normalsize = 186}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{186(186-145)(186-145)(186-82)}}{145}\normalsize = 78.65367}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{186(186-145)(186-145)(186-82)}}{145}\normalsize = 78.65367}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{186(186-145)(186-145)(186-82)}}{82}\normalsize = 139.082709}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 145 и 82 равна 78.65367
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 145 и 82 равна 78.65367
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 145 и 82 равна 139.082709
Ссылка на результат
?n1=145&n2=145&n3=82
Найти высоту треугольника со сторонами 141, 139 и 78
Найти высоту треугольника со сторонами 62, 50 и 27
Найти высоту треугольника со сторонами 10, 10 и 10
Найти высоту треугольника со сторонами 120, 108 и 92
Найти высоту треугольника со сторонами 139, 136 и 116
Найти высоту треугольника со сторонами 36, 34 и 18
Найти высоту треугольника со сторонами 62, 50 и 27
Найти высоту треугольника со сторонами 10, 10 и 10
Найти высоту треугольника со сторонами 120, 108 и 92
Найти высоту треугольника со сторонами 139, 136 и 116
Найти высоту треугольника со сторонами 36, 34 и 18