Рассчитать высоту треугольника со сторонами 145, 98 и 97

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 98 + 97}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-145)(170-98)(170-97)}}{98}\normalsize = 96.4552927}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-145)(170-98)(170-97)}}{145}\normalsize = 65.1904737}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-145)(170-98)(170-97)}}{97}\normalsize = 97.4496772}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 98 и 97 равна 96.4552927
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 98 и 97 равна 65.1904737
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 98 и 97 равна 97.4496772
Ссылка на результат
?n1=145&n2=98&n3=97