Рассчитать высоту треугольника со сторонами 145, 99 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{145 + 99 + 93}{2}} \normalsize = 168.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{168.5(168.5-145)(168.5-99)(168.5-93)}}{99}\normalsize = 92.0862023}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{168.5(168.5-145)(168.5-99)(168.5-93)}}{145}\normalsize = 62.8726485}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{168.5(168.5-145)(168.5-99)(168.5-93)}}{93}\normalsize = 98.0272477}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 145, 99 и 93 равна 92.0862023
Высота треугольника опущенная с вершины A на сторону BC со сторонами 145, 99 и 93 равна 62.8726485
Высота треугольника опущенная с вершины C на сторону AB со сторонами 145, 99 и 93 равна 98.0272477
Ссылка на результат
?n1=145&n2=99&n3=93
Найти высоту треугольника со сторонами 111, 110 и 24
Найти высоту треугольника со сторонами 130, 115 и 63
Найти высоту треугольника со сторонами 135, 107 и 87
Найти высоту треугольника со сторонами 97, 91 и 34
Найти высоту треугольника со сторонами 128, 114 и 91
Найти высоту треугольника со сторонами 139, 136 и 5
Найти высоту треугольника со сторонами 130, 115 и 63
Найти высоту треугольника со сторонами 135, 107 и 87
Найти высоту треугольника со сторонами 97, 91 и 34
Найти высоту треугольника со сторонами 128, 114 и 91
Найти высоту треугольника со сторонами 139, 136 и 5