Рассчитать высоту треугольника со сторонами 146, 101 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 101 + 82}{2}} \normalsize = 164.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164.5(164.5-146)(164.5-101)(164.5-82)}}{101}\normalsize = 79.0662742}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164.5(164.5-146)(164.5-101)(164.5-82)}}{146}\normalsize = 54.6965321}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164.5(164.5-146)(164.5-101)(164.5-82)}}{82}\normalsize = 97.3865084}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 101 и 82 равна 79.0662742
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 101 и 82 равна 54.6965321
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 101 и 82 равна 97.3865084
Ссылка на результат
?n1=146&n2=101&n3=82
Найти высоту треугольника со сторонами 133, 114 и 97
Найти высоту треугольника со сторонами 72, 61 и 42
Найти высоту треугольника со сторонами 122, 92 и 70
Найти высоту треугольника со сторонами 106, 78 и 74
Найти высоту треугольника со сторонами 114, 99 и 47
Найти высоту треугольника со сторонами 104, 101 и 4
Найти высоту треугольника со сторонами 72, 61 и 42
Найти высоту треугольника со сторонами 122, 92 и 70
Найти высоту треугольника со сторонами 106, 78 и 74
Найти высоту треугольника со сторонами 114, 99 и 47
Найти высоту треугольника со сторонами 104, 101 и 4