Рассчитать высоту треугольника со сторонами 146, 105 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 105 + 42}{2}} \normalsize = 146.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146.5(146.5-146)(146.5-105)(146.5-42)}}{105}\normalsize = 10.7356095}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146.5(146.5-146)(146.5-105)(146.5-42)}}{146}\normalsize = 7.72081503}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146.5(146.5-146)(146.5-105)(146.5-42)}}{42}\normalsize = 26.8390237}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 105 и 42 равна 10.7356095
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 105 и 42 равна 7.72081503
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 105 и 42 равна 26.8390237
Ссылка на результат
?n1=146&n2=105&n3=42
Найти высоту треугольника со сторонами 121, 87 и 85
Найти высоту треугольника со сторонами 135, 115 и 79
Найти высоту треугольника со сторонами 120, 119 и 57
Найти высоту треугольника со сторонами 118, 81 и 78
Найти высоту треугольника со сторонами 102, 87 и 75
Найти высоту треугольника со сторонами 134, 107 и 32
Найти высоту треугольника со сторонами 135, 115 и 79
Найти высоту треугольника со сторонами 120, 119 и 57
Найти высоту треугольника со сторонами 118, 81 и 78
Найти высоту треугольника со сторонами 102, 87 и 75
Найти высоту треугольника со сторонами 134, 107 и 32