Рассчитать высоту треугольника со сторонами 146, 105 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{146 + 105 + 73}{2}} \normalsize = 162}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162(162-146)(162-105)(162-73)}}{105}\normalsize = 69.0701861}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162(162-146)(162-105)(162-73)}}{146}\normalsize = 49.673764}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162(162-146)(162-105)(162-73)}}{73}\normalsize = 99.347528}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 146, 105 и 73 равна 69.0701861
Высота треугольника опущенная с вершины A на сторону BC со сторонами 146, 105 и 73 равна 49.673764
Высота треугольника опущенная с вершины C на сторону AB со сторонами 146, 105 и 73 равна 99.347528
Ссылка на результат
?n1=146&n2=105&n3=73
Найти высоту треугольника со сторонами 131, 95 и 69
Найти высоту треугольника со сторонами 124, 104 и 32
Найти высоту треугольника со сторонами 74, 70 и 6
Найти высоту треугольника со сторонами 141, 139 и 88
Найти высоту треугольника со сторонами 113, 102 и 15
Найти высоту треугольника со сторонами 72, 52 и 22
Найти высоту треугольника со сторонами 124, 104 и 32
Найти высоту треугольника со сторонами 74, 70 и 6
Найти высоту треугольника со сторонами 141, 139 и 88
Найти высоту треугольника со сторонами 113, 102 и 15
Найти высоту треугольника со сторонами 72, 52 и 22